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Abstract

Decision-theoretic models explain human behavior in choice problems involving uncertainty,
in terms of individual tendencies such as risk aversion. However, many classical models of
risk require knowing the distribution of possible outcomes (rewards) for all options, limiting
their applicability outside of controlled experiments. We study the task of learning such
models in contexts where the modeler does not know the distributions but instead can only
observe the choices and their outcomes for a user familiar with the decision problems, for
example a skilled player playing a digital game. We propose a framework combining two
separate components, one for modeling the unknown decision-making environment and an-
other for the risk behavior. By using environment models capable of learning distributions
we are able to infer classical models of decision-making under risk from observations of the
user’s choices and outcomes alone, and we also demonstrate alternative models for predic-
tive purposes. We validate the approach on artificial data and demonstrate a practical use
case in modeling risk attitudes of professional esports teams.

Keywords: risk models; prospect theory; inverse reinforcement learning; hybrid models

1. Introduction

Explaining human decision-making under risk has long been studied by behavioral economists
and cognitive psychologists, in form of white—box theoretical models that explain individ-

uals’ deviations from maximizing the expected value when facing risky options. Prospect

Theory (PT) (Kahneman and Tversky, 1979) and its descendant Cumulative Prospect The-

ory (CPT) (Tversky and Kahneman, 1992) are prime examples of such models. They ex-

plain risk behavior — how people make choices when the outcomes are stochastic — via

interpretable parameters and can predict future choices. Estimating the parameters is typi-

cally done on data collected in controlled experiments, where the outcome probabilities are

known and the choice problems are carefully constructed to expose specific types of risk

behavior (Gléckner and Pachur, 2012; Stott, 2006).
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Black-box decision models can also take additional features
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Figure 1: Two-component model for risk behavior in contexts where the user is familiar
with the environment but the modeler is unaware of the outcome distributions
of individual options. The environment model maps observable features of
individual options into a latent output representation, and the decision model
models the risk behavior of a user based on the representations of all options.

For predictive modeling of risky choices, we can also use machine learning (ML) (Cha-
jewska et al., 2001; Hartford et al., 2016; Kolumbus and Noti, 2019; Phan et al., 2016) or
hybrid methods that also incorporate elements of cognitive theory (Bourgin et al., 2019;
Noti et al., 2016; Plonsky et al., 2017; Rosenfeld et al., 2016; Peterson et al., 2021). Hybrid
models are typically ML models that incorporate theory-based elements, such as possible
loss aversion, as additional inputs, and have been demonstrated to outperform both purely
theoretical models and pure ML models in prediction tasks (Erev et al., 2017). A focus in
many hybrid approaches thus far has been in addressing incomplete information — ambigu-
ity — the decision maker has about the environment, identified as an important challenge
in decision-making literature (Camerer and Weber, 1992; Trautmann and Van De Kuilen,
2015). These models have extended the scope of risk modeling beyond the simplest settings,
but they are still trained on experiments specifically designed for learning the risk behavior
in limited cases, considering e.g. only binary lotteries where exactly one outcome is assumed
ambiguous (Bourgin et al., 2019; Erev et al., 2017; Plonsky et al., 2017) or a specific type
of partial knowledge of the outcome in binary lotteries (Peysakhovich and Naecker, 2017).

The examples above consider problems where the user making the decisions has only
partial knowledge of the environment, but the modeler knows and even has control of it.
We consider partial information in risk modeling from the opposite perspective: We want to
learn risk models by observing the choices of users in environments that are unknown for the
modeler. That is, we assume that the modeler does not know the outcome distributions for
the possible options and has no control over the experiment. Previous work on risk attitudes
in less controlled cases has focused on specific domains (Kréél et al., 2016; Sydnor, 2010),
whereas we want a general approach that does not require domain knowledge. To facilitate
this, we need to assume more from the user and make the simplifying assumption that they
have no ambiguity about the environment. This holds, for instance, for expert players of
digital games with transparent user interface, as well as for our example case of competitive
esports teams that employ professional coaches and analysts to provide information about
the possible outcomes of all decisions.
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To learn risk models in such conditions, we propose a novel hybrid approach combining
cognitive theory with data-driven models. We first construct a flexible data driven rep-
resentation of the environment using e.g. Gaussian processes (GP) or Monotonic Neural
Density Estimator (MONDE; Chilinski and Silva, 2020), and then provide its output for a
separate risk model, often a theory-based model such as CPT. This is in contrast to the
existing hybrid approaches (Bourgin et al., 2019; Erev et al., 2017; Plonsky et al., 2017)
that feed theory-based features to a black box ML model. Our approach, illustrated in Fig-
ure 1, allows both training traditional risk models outside controlled experiments designed
for inferring the risk attitudes as well as purely predictive decision models.

The approach is loosely related to model-based reinforcement learning (RL) that also
separates the environment model from a policy (Sutton and Barto, 2018), but departs from
the goal of RL. Our aim is not to find a reward-maximizing policy, but to understand the
policy of an agent operating in the environment and we do this based on observed data of
independent decisions. The work also relates to imitation learning and behavioral cloning
(Kroemer et al., 2021), where the goal is to mimic the user behavior. This is typically
done with arbitrary policies, and our approach can be interpreted as one way of conducting
imitation learning with interpretable policies.

We demonstrate the approach in learning white box models for risk behavior from ob-
served data, by constraining the environment model to output probability distributions
using MONDE. We also introduce a decision module based on recurrent neural networks
for predicting risk behavior and for evaluation of how well the individual users follow specific
risk theories. The proposed architecture can efficiently model choice problems, by support-
ing varying number of inputs with the same number of outputs. Furthermore, we introduce
a new pseudo-labeling technique for addressing the selection bias in observed data. We
empirically evaluate the approach on synthetic data to best characterise the effect of the
model alternatives, and then demonstrate it in a concrete application case of modeling risk
attitudes of professional esports teams.

2. The Learning Problem

We start with a motivational example to help understand the setting, but note that the
approach is general. The task is to model risk behavior of players of a turn-based computer
game where on every turn they select one discrete action and observe a stochastic outcome
(e.g. a reward) for it. The outcome may be provided by the system (e.g. the amount of
damage dealt in a role-playing game) or it may depend on the player’s skill (e.g. result of
a real-time combat sequence initiated by the action). In both cases the player makes the
decision based on some features available for each option (e.g. attack and defence skills of
the characters involved) and we assume players are familiar with the game, knowing the
possible outcomes and their probabilities with sufficient accuracy. The modeler, however,
does not know the probabilities for the outcomes. We will later consider a concrete case of
esports teams making the decision of how much of their resources to invest for a particular
round. The competitive teams have very accurate understanding of their winning chances,
but we as the modelers need to learn them from historical data. Outside of gaming, any
competition where competitors have spent significant effort training for it, serves as an
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example. For instance, for play calls in American Football or opening moves in chess the
decision maker knows which actions are risky, but the modeler does not.

Concepts and Notation: We model the risk behavior of a user that faces a number of
independent choice problems (called lottery sets), each of them characterized by K vector-

valued features {x1,...,xx} for the K different options (with varying K for each set),
and always selects exactly one of these stochastic options Y|z according to some unknown
policy 7({(Yi|z1),...,(Yk|zK)}). We assume continuous outcomes y € R with larger y

corresponding for more favorable outcomes for notational simplicity. The outcomes follow
some probability distribution p(y|x), which is assumed known (with sufficient accuracy) for
the user but unknown for the modeler. We assume p(y|z) is static and somehow smooth,
to facilitate learning, but do not make assumptions on how the lottery sets are formed.

We observe a user facing N; lottery sets with varying number of options K;, and we
observe the features x;; for all options ¢ € {1,...,N;}. The outcome y,,, however, is only
observed for the choice ¢; € {1,..., K;} the user made. This is because in most use cases
the choice triggers a change in the environment and we can only observe the outcome for
that particular choice. The full data is hence {{z;1, ..., %K, }, Ve, cz-}f.vzll.

Approach: We want to learn a model for the risk attitude of the user by observing
their choices, by learning both how the environment operates (a mapping x — y) and how
the user behaves (the policy 7). For this, we propose a two-component design shown in
Figure 1. The first component models the environment, learning the stochastic outcomes
Y|x. The second component models the risk behavior of the user, based on output of
the first component and potentially other information. This architecture is influenced by
the general principle of separately modeling the environment and the user, used e.g. in
machine teaching (Zhu et al., 2018) and model-based RL (Sutton and Barto, 2018), but
not previously used for modeling risk attitudes. Similar model decomposition has been
used also as basis for machine theory of mind (Rabinowitz et al., 2018) and as intermediate
between model-based and data-driven learning in robotics (Karkus et al., 2019).

The architecture is entirely modular, supporting alternative models for both compo-
nents. However, they are tied to each other so that white box models for explaining risk
behavior require specific outputs for the environment model. For predicting the user’s be-
havior, however, we can use almost arbitrary models for both components. We will first
discuss the environment models in Section 3 and then the decision models in Section 4.

3. Environment Models

The environment model maps the features x of individual options into representations of
Y|« useful for making decisions. In principle it can be any learnable function g(z, ¢), such
as a neural network or Gaussian process. We are not interested in the specific architecture,
but instead focus on (a) the form of the output representations, and (b) how to best train
the model on the observed data. We consider three alternatives for the output: a point
prediction § = ¢g(f(z,¢)), a latent representation f(x,¢$) of a model trained for point
predictions, and cumulative distribution function (CDF) P(Y'|z). The last one is motivated
by the classical risk models, such as CPT, requiring distributional information as input.
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3.1. Output Representation

For the first two representations we can use arbitrary black box models, typically feedfor-
ward neural networks with f(x,¢) denoting the last hidden layer and g¢(-) mapping it to
the prediction. The latent representation f(x,¢) is a more informative, and we will later
demonstrate that it helps for learning the decision model.

For P(Y|z), we need to use specific models designed to provide distributions, and to
emphasize this we use the notation Py(Y < y|z) for a model that outputs CDFs. For
any such model, we form an outcome representation as fixed-dimensional vector ¢, = ¢(p)
storing the quantiles for given range of probabilities p. This is sufficient information for
learning many white-box decision models. To avoid making additional assumptions, we use
MONDE (Chilinski and Silva, 2020) as a flexible model for CDFs. It directly optimizes the
likelihood of the observed outcomes as the derivative of the CDF, py(y|z) = %qu(Y < y|z).
By forming the likelihood using the derivative, the model sidesteps the need to compute
the normalization constant of the distribution, and the added computational overhead of
double automatic differentiation remains manageable.

For small training data it may be difficult to learn a fully non-parametric estimate.
In such cases the learning problem can be regularized by explicitly assuming a specific
functional form of the distribution Y'|X and computing the CDF using the distribution’s
quantile function. For instance, we can use Gaussian processes (Rasmussen and Williams,
2005) and neural networks outputting the parameters of the selected distribution.

3.2. Learning

The parameters ¢ of the environment model are trained in standard fashion; we used Py-
Torch with Adam optimizer. Here we focus on how to address the semi-supervised nature
of the problem: For the ith lottery set we observe a collection of features {z;i,...,zik,},
but only one y,,, the outcome of the option the user selected. Importantly, the labeling
process is not uniformly random, but instead the labels are selectively provided based on
the policy m, of the user u. In most cases we observe outcomes for a highly biased selection
of features, obtaining very few — if any — labels for options with low probability under .
Figure 2 shows an example where for x € [0.5, 1] we do not observe any outcomes.

We can learn environment models with the supervised labels alone, but also provide ways
for learning better models. The first relies on the insight that we do not need to accurately
model the bad options. Instead, it is enough that the outcome representation for them is
such that the decision model will ignore it. For instance, for CPT, the softmax normalization
will imply it is sufficient to output low cumulative prospect value (see Section 4.1 for details).
The second approach utilises data collected for other users under different policies .

Pseudo-labeling:  Pseudo-labeling (Lee, 2013) refers to methods determining pseudo-
labels 3’ for instances without a label, to complement the supervised data with {zz, ¥}, } k£, -
We propose a heuristic encouraging models to identify the unselected options as poor,
corresponding to low values of y for typical realizations. For models that output P(Y|x) we
have an internal definition for ’low’: Since the model defines — at any stage of optimization
— P(Y|z) for all possible x, we can use the current estimate to define the scale by using
pseudo-label 3’ corresponding to some low quantile of the current estimate.
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Figure 2: Left Example environment with orange lines showing the true dynamics (mean:
solid; 0.05 and 0.95 quantiles: dashed) and black '+’ indicating the outcomes for
the choices of the user. The gray dots show hypothetical outcomes for the other
options to illustrate how outcomes available for training the model are clearly
non-uniform. The circles indicate a single lottery set of three options, denoted by
capital letters, with A corresponding to the choice of the user. Right The user
makes decisions according to distribution of possible values, here shown for the
lottery set indicated by the circles. The choice of A corresponds to risk-seeking
behavior; the expected value is lower than option C’s but the user still prefers it.

Given a current estimate of the environment model P(Y |z) and a lottery set {z1, ..., zx},
we compute estimates of CDFs {P(Yi|x1), ..., P(Yk|2zk)}, then select a number of covari-
ates to sample the pseudo-label for from a low quantile range [piow, Phigh] using inverse
transform sampling ' ~ f’;ﬁ;,(U (Plows Phigh))- Both the number of the pseudo-labels and
the quantile range are hyperparameters; we assign pseudo-labels for random options so that
the total fraction per minibatch increases linearly from 3% to 10% during training.

Shared Environment Models: Sometimes the environment is mechanistic and indepen-
dent of the user, e.g. when investing moderate (not market-changing) amounts in stocks
or for turn based games with no skill component. In contrast, a game where the outcome
depends on the motor skills of the player would be an example of a non-shared environment.

For shared environments we can (and should) train the environment model on data of

N . .
fz)} 4 }{y;l, but not just because of the added total volume. By using

all users {{a:z(gz),y p
multiple users we can observe outcomes also for features that a particular user would never
consider. Other users with slightly different policies help modeling borderline cases better,
whereas even irrational users selecting randomly help learning P(Y'|x) for generally poor

options. We will later show how different compositions of policies influences the learning.

4. Decision Models

The second component models the behavior of an individual user, either for interpreting or
predicting their risk behavior. Next we describe one theory-based model and one black box
predictive model based on recurrent neural networks as concrete examples.
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4.1. Cumulative Prospect Theory

A core motivation for our work was in enabling training of theory-based risk models
from observational data, and as a specific example we describe the popular cumulative
prospect theory (CPT) model (Tversky and Kahneman, 1992). It assumes humans have
non-linear utility functions and a distorted perception of probabilities (over /underestimating
the small/large probabilities). More formally, the continuous version of CPT (Wakker and
Tversky, 1993) assumes decisions are based on cumulative prospect values (CPV)

0 d

CPV(Y|x) = / (a)%(w_(F(a)))da + /000 v(a)dia(—uﬁ'(l — F(a)))da, (1)

v
—0o0

where F'(a) is the CDF of the random variable Y'|z. It immediately follows that CPT can
only be trained based on environment models that output the CDF. The choice itself is

modeled with softmax as P(C =c¢) = %.
j=1X J

The CPV depends on weight function w(-) and utility function v(-) that transform the
densities and the outcomes of a random variable. We use

+(p) = P P {aa, ifa>0

p) = w™(p) = v(@) = ~A(—a)?,ifa <0

1 1
(P + (1 =p)7)* (P +@Q=p )
following Tversky and Kahneman (1992). A specific risk behavior is hence defined by
five parameters: «, 3, A\, 77, and v~. We optimize the log-likelihood of the observed
choices using stochastic gradient ascent w.r.t the unconstrained parameters and use softplus
transformation for A\ and sigmoid for the others to constrain them to their appropriate
ranges.

4.2. Black-box Model for Risk Behavior

The other main use-case is predictive modeling of risk behavior, which can also be done
using black-box models. As will be shown in Section 5.2, we still want to use outputs
of the environment model as inputs rather than the original features. We next propose
a concrete black box architecture for predicting choices specifically in contexts where the
user faces lottery sets of varying numbers of options and is expected to make the decisions
independently based on fixed risk tendency. In principle any neural network mapping inputs
to probability distributions over the K options could work, but we want (a) support for
general and varying K combined with (b) easy minibatching over multiple lotteries, (c)
without padding, which would be inefficient in case some lottery sets have very large K.
Recurrent neural networks (RNNs) offer a natural solution for variable length inputs.
They are often used in partially observable sequential decision making and reinforcement
learning contexts (Bhattacharyya et al., 2018), but here we use them to model data with
variable amounts of options. We propose a combination of two RNNs illustrated in Figure 3
and defined as RNN;(RNNy(2)), where z € REi*4 denotes all inputs for the decision model,
for instance the quantiles z = g, or concatenation of input features and a hidden state of
point prediction z = [z, f(z,¢)]. One RNN maps the variable length inputs into a joint
hidden representation of size h, and the other takes the hidden representation and outputs a
single value for each option, followed by softmax normalization to a probability distribution.
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RNN1 RNN2

Figure 3: Black-box model for predicting choices. The output representations (here with
K; = 3, but in general variable) are fed to the first RNN that provides h features
for the second RNN that outputs selection probabilities for all options.

This structure has the advantage of avoiding padding for both inputs and outputs, and the
model does not output probabilities for options that cannot be selected.

The variable-length sequences are input as a packed tensor for efficient computation.
More specifically, during training a minibatch is a (b x K; x d) tensor, where b is the batch
size, K; is the number of possible options for that particular lottery set and d is the number
of features (e.g quantiles or task specific features). For each input we then output a (b x K;)
tensor with the probabilities for each option. Note that due to the sequential nature of
RNNs the model inherently assumes an ordering over the options. To reduce the risk of this
influencing the choices we randomize the order of the options within each lottery set during
each training step, and in practice the model seems to result in order-invariant choices.

5. Experiments

We validate and demonstrate the method using three experiments. Experiment 1 shows
that we can infer risk behavior with decision-theoretic models without assuming known
probabilities for outcomes. Experiment 2 demonstrates the framework in prediction tasks.
Experiment 3 studies the question of training environment models when we can only
observe the selected outcomes. Finally, we provide a Case study of modeling risk attitudes
of esports teams. The technical details such as the exact model architectures and parameters
of the synthetic environment are provided in the Supplement.

We experiment primarily on simulated data to enable comparison for the classical ap-
proach of learning risk behavior from known outcome distributions. Even though we use a
relatively simple parametric environment, we emphasize that it is particularly challenging
for the purpose of learning risk models. We do not control the selection of the lottery sets
in any way, but rather sample x for individual options independently. This is in stark
contrast with the classical approach using experiments specifically designed to maximally
expose risk behavior (Glockner and Pachur, 2012; Stott, 2006).

Simulated Data: For Experiments 1-3 we use a simulated environment with non-linear
relationship between x and y, strongly heteroscedastic noise, and the possibility to control
the complexity of the environment by a single parameter m, the dimensionality of the
features x € R™ — for larger m the environment is naturally more difficult to learn. For
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reproducibility we use the environment
5 A in( T AT T
y = — arcsin (Sln(§ﬁ2 x)) + exp(cos(fy x) +0.2)z, (2)
T

where z ~ N(0,1), but note that other environments with strong heteroscedasticity could
also be used. The models do not know this form, except for the baseline of learning CPT
from true outcome distributions. Figure 2 illustrates the environment for m = 1 and in the
experiments we vary m to control the difficulty of the problem.

Each lottery set has K; ~ Unif(3,10) options with features x;; sampled independently
from a continuous uniform distribution within the hypercube [—2, 3], without controlling
the richness of the lottery set in any way. The users face the lottery sets in sequence but
make independent choices ¢; for each following their policy .

We simulate users from multiple policies 7, with primary interest in CPT (Section 4.1).
Each CPT policy is defined by the parameters #* € R® indicating the true risk behavior,
sampled randomly so that A varies in (1, c0) while all other parameters vary in the range of
(0,1). We also use alternative deterministic policies (that still only depend on P(Y|z)) for
studying prediction of behavior not conforming to the specific theory: risk neutral selects
the option with largest median, loss averse maximizes the 0.1 quantiles of the options, and
reckless non-rationally selects the option with the 2nd lowest 0.3 quantile.

5.1. Experiment 1: Interpretable Risk Models

To show that we can learn decision-theoretic models from observational data, we compare
the accuracy of inferring the CPT parameters of simulated users with MONDE as the
environment model, against inferring them in known environment. We use the environment
(2) with m = 1, simulate 18 users, each following a different CPT policy, and study our
ability to infer their risk behavior for cases with varying number of choices from N; = 64 to
N; = 4096. For each user and N}, we repeat the experiment 10 times with newly generated
lottery sets. We evaluate the parameter recovery using the median absolute error over the
CPT parameter vector M AE(6,0%) = Median(|0 —0*|), so that for a good accuracy at least
half of the parameters need to be estimated well.

Figure 4 (left) compares the approach with MONDE as the environment model against
the theoretically optimal ground truth assuming known environment, averaging MAE over
both users and lottery sets. It confirms we can learn CPT from observational data alone,
even from purely stochastic lottery sets, but need more data. The accuracy improves
naturally as a function of available data, and importantly at the same pace for both cases.
For additional insight, we also plot the accuracy for a hypothetical model that has access to
all outcomes y; (also for the options the user did not select) when training the environment
model. It confirms MONDE is capable of learning the environment model with ample data,
and the comparison indicates the limiting factor here is learning the environment model.

Figure 4 (right) shows the main source of variation comes from the construction of
the lottery sets, confirming a well-known property of risk models (Broomell and Bhatia,
2014). It plots the distribution of errors over 100 random data sets for two example users
for N; = 512. The difference between the users — and even between the learnt and known
environment models — is small compared to the range of errors over different lottery sets.
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Figure 4: Left: If we can observe all outcomes (red), we can model the unknown envi-
ronment so well that CPT parameter recovery is almost identical to the case of
known environment (orange). If only observing the outcomes for selected choices
we need more data but can still learn the true CPT parameters. Right: Almost
all of the variation in parameter recovery comes from the lottery set construc-
tion, shown by wide distributions of errors for two users (solid and dashed lines),
whereas the difference between users and even between estimated (green) and
true (yellow) environments is small. The shaded area indicates the distribution
of errors over all 25 users and 100 replicates, confirming the conclusion.

5.2. Experiment 2: Predicting Risk Behavior

For predictive tasks we consider a more challenging setup where the data is not necessarily
sufficient for learning a perfect model for the environment and the policies may not match
a given theory. We use the environment (2) with m = 2 and 4096 lottery sets for each user.
We report the predictive accuracies over 1024 test lottery sets, averaging the results over
10 replications of the experiment.

We use the proposed RNN architecture with three environment models, each providing
different representation for the outcomes: point prediction ¥, a generic latent representa-
tion f(z), and the quantiles gp. The last one uses MONDE as the architecture, whereas
the other two use a generic feedforward network of similar complexity to focus on illustrat-
ing the effect of the output representation. We also matched the dimensions of the latent
representations f(x) and gp,. We additionally experimented with decision models that in-
clude the original features, to show how including them can help correcting for suboptimal
environment models. As baselines we consider the RNN without environment model at all,
only taking x as input, and CPT using MONDE as the environment model.

Table 1 presents the prediction accuracies (median and std) for all policies and model
variants. For the case of only P(Y|X) as input and a true policy following a CPT the
two methods are comparable in accuracy, confirming the black-box model can replicate
the theory-based model when the assumptions of the latter hold. For all other true policies
RNN always outperforms CPT that cannot describe them. The main observations regarding
the different RNN variants are: (a) Using an environment model of any kind is highly
beneficial as the baseline of RN N (z, —) is clearly inferior compared to others; (b) a rich
latent representation f(z) is to be preferred compared to constraining the environment
model to output densities P(Y|x); (¢) using also the input features helps.
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CPT risk neutral  loss averse reckless
RNN(X, -) 0.56 (0.028) 0.46 (0.067) 0.66 (0.02) 0.26 (0.021)
RNN(X, 9) 0.69 (0.02) 0.62 (0.051) 0.84 (0.025) 0.42 (0.016)
RNN(X, f(X)) 0.73 (0.025) 0.76 (0.039) 0.9 (0.022) 0.42 (0.036)
RNN(X, P(Y|X)) 0.68 (0.021) 0.4 (0.082) 0.86 (0.015) 0.3 (0.05)
RNN(-, P(Y|X)) 0.65 (0.022) 0.41 (0.088) 0.83 (0.015) 0.3 (0.05)
CPT(-, P(Y|X)) 0.62 (0.03) 0.26 (0.078)  0.79 (0.021) 0.22 (0.023)

Table 1: Predictive accuracy for two-dimensional environment, with true policies as
columns and decision models as rows. The first term in parenthesis tells whether
the decision model uses the features z as inputs and the second indicates the
output representation of the environment model.

Model Observed outcomes Pseudo-labeling  All outcomes
RNN(-, P(Y|X)) 0.65 (0.022) 0.69 (0.027) 0.75 (0.009)
RNN(z, P(Y|X)) 0.68 (0.021) 0.71 (0.027) 0.76 (0.009)
CPT(-, P(Y|X)) 0.62 (0.03) 0.65 (0.027) 0.75 (0.013)

Table 2: Effect of pseudo-labeling for predictive accuracy of a CPT policy. 'Pseudo-labeling’
provides consistent improvement over the standard method using only the ’ob-
served outcomes’. "All outcomes’ is a theoretical upper bound for pseudo-labeling
accuracy, obtained by using also outcomes of unselected choices.

5.3. Experiment 3: Training of Environment Models

Experiment 1 revealed the inability to learn accurate environment model as the main bot-
tleneck. Here we show how we can address it (a) by using data collected from other users
for learning the environment model and (b) by pseudo-labeling of unselected options.

Sharing Data: Experiments 1 and 2 trained the environment model only on the data
from the user of interest, but for shared environments we can use data from multiple users
for learning the environment model. We consider the case of N; = 512 choices for learning
the decision model for m,, but increasingly larger sample for training the environment
model (with m = 4) from three alternative sources: (a) data for this user, following 7,; (b)
data for other random CPT users m,,, each providing 512 choices; and (c¢) Data with half
of observations from other CPT users m,, and half from users choosing uniform random.
Figure 5 (plotting average error over 50 CPT profiles) shows that we learn 7, increasingly
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Figure 5: CPT parameter recovery for shared environment model. Data collected from
users with different policies (blue), including even random behavior (yellow) is as
good as data collected for this user (red).

more accurately for larger data for training the environment model also when the data was
collected under other policies, until we can learn essentially perfect environment model.

Pseudo-labeling: To evaluate the value of pseudo-labeling for ensuring the environment
model learns to indicate poor options as undesirable, we repeat Experiment 2 for the CPT
policy and for the models using P(Y|z) as outcome representation. Now, however, we
train MONDE using also pseudo-labels for a subset of the unselected options, selected from
[0.3,0.5] quantile range of the current model estimates.

Table 2 reveals consistent positive effect for both RNN and CPT decision models when
using the proposed pseudo-labeling technique. To quantify the magnitude of the improve-
ment, we also report the accuracy for a baseline that trains MONDE using the real outcomes
for all possible actions that can here be obtained because of the artificial environment. It
serves as an upper bound for what is in principle achievable (it corresponds to pseudo-
labeling all unlabeled data points with perfect labels), and by using the pseudo-labels we
can reduce the gap to this ideal accuracy by 23-40%. This was achieved without fine-tuning
the parameters of the heuristic; e.g. cross-validation could be used to improve the accuracy.

5.4. Case Study: Risk Models in Esports

We demonstrate a typical way of using the approach by modeling the risk behavior of com-
petitive Counter-Strike: Global Offensive (GS:GO) teams preparing for individual rounds.
In CS:GO, players compete in teams of 5 against each other, using equipment and weapons
such as guns, grenades and bullet-proof vests available from the in-game shop. A single
game of CS:GO consists of 30 rounds (plus a possible overtime) and before each round the
players can spend money earned during previous rounds to purchase new equipment. The
purchase decisions play a significant role in the outcome of the round, especially in profes-
sional CS:GO games. The competitive teams make the decisions as a unit, and hence we
consider each team as a user. We here present results for two top-level professional teams,
Astralis and Gambit Esports to illustrate the approach, but leave more detailed analysis
of risk behavior of CS:GO teams as future work. The teams competing at this level em-
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Utility Astralis  Gambit

.| — Astralis Train size 2238 2440
— Gambit Test size 959 1045

i EU acc. | 0.387 0.548
2o RNN acc. | 0.635 0.663
s o' 0.97 0.99
ﬁ B 0.08 0.05

h A 2.75 3.35

-4 -2 0 2 4

y

Figure 6: Utilities of two CS:GO teams, un- Table 3: The setup and results of the CS:GO
der the expected utility model. case study.

ploy professional coaches and are playing for substantial prize money, and hence we can
safely assume they understand the environment well, but we need to learn the environment
because the outcomes depend on the skills of the teams in a complex manner.

Setup: Each lottery set corresponds to one round where the team makes the decision of
how much to invest. As individual choices we consider four discrete investment strategies
ranging from very conservative saving strategy to aggressively investing all resources, cor-
responding to categories commonly used in CS:GO analytics. As the outcome Y|X we use
the sum of the money and the value of the team’s equipment after the round, generally
considered as strong proxy for winning probability of future rounds. This is influenced both
by the result of the match as well as the investment strategy itself. As inputs for the envi-
ronment model we use 12 features X describing the overall game situation. See Supplement
for full description of the features and the setup.

We use MONDE as the environment model and Expected Utility (EU) as the decision
model. EU is obtained as special case of CPT when v© = 4~ = 1, and is here used for
easier interpretation. Since the environment is not shared, we use team-specific environment
models trained on 2,000+ lottery sets for each team, and we also evaluated the predictive
accuracy for approximately 1,000 rounds using both EU and RNN as the decision models.

Results: The results are shown in Figure 6 and Table 3. Both teams have similar risk
behavior, with a small difference for losses. Both teams have low 3, which indicates they do
not pay significant attention to the degree of possible loss — already a small loss is considered
clearly negative. We speculate that the parameters for the two teams’ behaviors are similar
because elite teams approach the game similarly, but also note that more detailed input
features might be needed to reveal subtle differences.

For both teams EU predicts future behavior clearly better than the random baseline of
0.25 (the decisions are not balanced, but we predict shuffled indices), but not as well as
RNN. This can be seen as evidence that their behavior does not match EU directly, and
suggests we should not make strong conclusions based on this particular model. Note that
this should not be considered as a negative result, but rather an illustration of how the
approach provides information on whether the teams follow the given model or not.
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6. Discussion

We considered maximally challenging setup for learning risk models, to emphasize deviation
from controlled experiments. Figure 4 shows that the diversity of lottery sets greatly influ-
ences our ability to identify risk behavior, confirming previous results (Broomell and Bhatia,
2014), but also that with enough data we can infer risk behavior despite information-poor
lottery sets. Since we passively observe the user, we can assume ability to collect much
more data than in typical controlled experiments; in extreme cases we might be observing
a user that has been playing a game daily for years. Furthermore, we do not expect most
real applications to be this challenging. For instance, games are designed to engage the
player by offering interesting choice problems. While they will not be ideal for identifying
risk behavior, they still provide richer information than the random lottery sets used here.

One advantage of shared framework for theory-based and black box models is in rec-
ognizing the limitations of specific model based on differences in predictive performance.
For instance, (a) if we have enough data and a user truly follows a CPT model, then
RNN(—,P(Y|x)) and CPT(—, P(Y|z)) have similar predictive performance, and (b) if in-
corporating x as additional covariate improves predictive performance then either we have
insufficient data for learning the environment model, or the user is not following any risk
model but rather uses external factors (for instance, more often selecting their favorite char-
acter). Such comparisons can be used as part of a workflow for learning risk behavior from
observational data, to determine whether the interpretations can be trusted.

Here learning the environment model was more challenging than learning the user model,
even in low-dimensional environments. This strongly suggests using shared environment
models when applicable, with pseudo-labeling as alternative for other cases. Finally, we note
that the environment and decision models were trained in isolation, rather than jointly. This
has the advantage of better modularity and conceptual separation, and we did not observe
benefits from end-to-end training in preliminary experiments.

The case study on risk attitudes of esports teams was intended as demonstration of a
prototypical use-case. For more detailed analysis, one would naturally need to consider more
teams and pay more attention to careful selection of informative features for the models.

7. Conclusion

We proposed a general framework for understanding and predicting risk behavior, the
way individuals select amongst stochastic outcomes, combining data-driven and decision-
theoretic models in a new way. It enables training theory-based risk models from observa-
tional data alone, by leveraging data-driven models for the environment, while encompassing
also black box predictive models. Compared to previous hybrid models it has the advantage
of utilising standard decision-theoretic models as is. In summary, we provide the basis for
interpreting risk behavior of individuals at scale for applications where we can passively
observe a large number of choices for each individual.
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