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Abstract Least squares twin support vector machine
(LSTSVM) is a relatively new version of support vector
machine (SVM) based on non-parallel twin hyperplanes.
Although, LSTSVM is an extremely efficient and fast algo-
rithm for binary classification, its parameters depend on
the nature of the problem. Problem dependent parameters
make the process of tuning the algorithm with best values
for parameters very difficult, which affects the accuracy of
the algorithm. Simulated annealing (SA) is a random search
technique proposed to find the global minimum of a cost
function. It works by emulating the process where a metal
slowly cooled so that its structure finally “freezes”. This
freezing point happens at a minimum energy configuration.
The goal of this paper is to improve the accuracy of the
LSTSVM algorithm by hybridizing it with simulated anneal-
ing. Our research to date suggests that this improvement on
the LSTSVM is made for the first time in this paper. Exper-
imental results on several benchmark datasets demonstrate
that the accuracy of the proposed algorithm is very promis-
ing when compared to other classification methods in the
literature. In addition, computational time analysis of the
algorithm showed the practicality of the proposed algorithm
where the computational time of the algorithm falls between
LSTSVM and SVM.
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1 Introduction

Support vector machine (SVM), first introduced by Cortes
and Vapnik (1995), is a classification technique based on
the structural risk minimization (SRM) algorithm. The algo-
rithm rapidly became used in many classification tasks due
to its success in recognizing handwritten characters in which
it outperformed precisely trained neural networks. In addi-
tion to recognizing handwritten characters, SVMs performed
successful classification in other applications such as: time
series prediction (Ruanet al. 2013), pattern classification (Wu
et al. 2010), and bioinformatics (Guyon et al. 2002; Sartakhti
et al. 2012). A comprehensive tutorial on the SVM classifier
algorithm has been published by Burges (1998).
After the introduction of SVM in 1995, different versions
of this powerful classifier were advanced including the least
squares twin support vector machine (LSTSVM), introduced
in 2009 (Arun Kumar and Gopal 2009). LSTSVM combines
the idea behind least squares SVM (LSSVM) (Suykens and
Vandewalle 1999) and twin SVM (TSVM) (Khemchandani
and Chandra 2007).
A crucial challenge in LSTSVM and all other versions
of SVM is how to set their parameters with best values.
LSTSVM has four parameters which are highly dependent
on the nature of the problem. Therefore, finding best val-
ues for these parameters is almost impossible for user.Our
current research suggests that this is the first study to find
the best values for LSTSVM parameters. However, there
are several methods for dominating this challenge in SVM.
Huang and Wang (2006) proposed a genetic algorithm (GA)
approach for parameter optimization. They evaluated sev-
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eral medicine datasets using their proposed GA-based SVM.
Ren and Bai (2010) also presented two approaches for para-
meter optimization in SVM, GA-SVM and particle swarm
optimization (PSO) SVM. A hybrid ant colony optimiza-
tion (ACO) based classifier model which simultaneously
optimizes SVM kernel parameters and selects the optimum
feature subset has been proposed by Huang (2009). Salimi
et al. proposed a method that hybridized SVM and simulated
annealing (SA) (Sartakhti et al. 2012). In addition, Lin et al.
(2008) develops a simulated annealing approach for parame-
ter determination and feature selection in the SVM, termed
SA-SVM.
Simulated annealing is an optimization algorithm which
solves the problem of becoming fixed at local minima (or
maxima) by allowing less optimum moves to be chosen
sometimes by some probability. The method was described
independently by Kirkpatrick et al. (1983) and by Černỳ
(1985). Simulated annealing selects a solution in each
iteration by first checking if the neighbor solution is bet-
ter than the current solution. If it is, the new solution
will be accepted unconditionally. If, however, the neigh-
bor solution is not better, it will be accepted based on
some probability depending on how much it differs from
the neighbor solution and the value of the current solu-
tion. In this paper, we have integrated Simulated Annealing
with LSTSVM to identify the optimal parameters which
enhance LSTSVM accuracy. Our experimental results have
demonstrated that the proposed method has higher accura-
cies compared to other well-known versions of SVM. In
addition, for all evaluated data sets the proposed algorithm
outperformed C4.5 which is a powerful algorithm in classi-
fication context. Furthermore, computational time analysis
showed that our proposed algorithm is faster than SVM
and it is completely a practical algorithm for classification
tasks.
The rest of this paper is organized as follows. A brief review
of basic concepts including SVMand some different versions
of the algorithm is presented in Sect. 2. The proposed SA-
LSTSVM algorithm is introduced in Sect. 3. Section 4 gives
the experimental results, and finally in Sect. 5 conclusions
are presented.

2 Basic concepts

This section presents a brief review of different versions of
SVM. The versions presented are the standard SVM, TSVM,
and LSTSVM.

2.1 Support vector machine

SVM is a maximum margin classifier which means that its
goal is to minimize classification error and at the same time

Fig. 1 Geometric interpretation of SVM

maximize the margin between two classes. For example,
given a set of training points (xi , yi ), i = 1, . . . , n each input
training data xi ∈ R

d belongs to either of two classes with
labels yi ∈ −1,+1. SVM seeks a hyperplane with equation
w.x + b = 0 which can satisfy the following constraints

yi (w.xi + b) ≥ 1, ∀i. (1)

where w is the weight vector and b is the bias term. Such a
hyperplane could be obtained by solving Eq. 2:

Minimize f (x) = ‖w‖2
2

subject to yi (w.xi + b) − 1 ≥ 0 (2)

The geometric interpretation of this formulation is depicted
in Fig. 1 for a toy example.
An important problem with SVM is its computational time.
If “l” indicates the size of training data samples, then the
computational complexity of SVM is of order O(l3), which
is very expensive.

2.2 Twin support vector machine

InSVMonly onehyperplane performs the task of partitioning
samples into two groups of positive and negative classes. In
2007, Khemchandani and Chandra (2007) proposed TSVM
to use two hyperplanes in which samples are assigned to a
class according to their distance from each hyperplane. The
main equations of TSVM are:

xiw
(1) + b(1) = 0

xiw
(2) + b(2) = 0 (3)

where w(i) and b(i) are weight vectors and bias terms of the
i th hyperplane. In TSVM each hyperplane is a representative
of the samples of its class. This concept is geometrically
depicted in Fig. 2 for a toy example.
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Fig. 2 Geometric interpretations of twin SVM

In TSVM, the two hyperplanes are non-parallel with each
being closest to the samples of its own class and farthest
from the samples of the opposite class (Ding et al. 2014;
Shao et al. 2011). Assuming A and B indicate data points of
class +1 and class −1, respectively, the two hyperplanes are
obtained by solving (4) and (5).

Minimize
1

2
(Aw(1) + e1b

(1))T(Aw(1) + e1b
(1)) + c1e

T
2 q

w.r.t. w(1), b(1)

subject to − (Bw(1) + e2b
(1)) + q ≥ e2, q ≥ 0 (4)

Minimize
1

2
(Bw(2) + e2b

(2))T(Bw(2) + e2b
(2)) + c2e

T
1 q

w.r.t. w(2), b(2)

subject to Aw(2) + e1b
(2) + q ≥ e1, q ≥ 0 (5)

In these equations, q is a vector contains the slack variables,
ei (i ∈ {1, 2}) is a column vector of ones with arbitrary
length, and c1 and c2 are penalty parameters. Once the hyper-
planes are obtained, a new data point is assigned to class +1
or class −1 depending on to which hyperplane the point is
closer in terms of perpendicular distance.
In TSVM, the number of constraints in the equation of each
hyperplane is equal to the number of samples in the opposite
class. Therefore, if there is an equal number of samples in the
two classes, the number of constraints for each hyperplane in
TSVM is equal to half the number of constraints in SVM.The
computational complexity of TSVM is O((l/2)3) (Tomar
andAgarwal 2014). It can be shown that the TSVM increases
the speed of the algorithm by a factor of 4 compared to the
traditional SVM, i.e. it is four times faster when compared
to the SVM.

2.3 Least squares twin support vector machine

LSTSVM (Arun Kumar and Gopal 2009; Shao et al. 2012)
is a binary classifier which combines the idea of LSSVM
(Suykens and Vandewalle 1999; Mitra et al. 2007) and
TSVM. LSTSVM employs “least squares of errors” to mod-
ify inequality constraints in TSVM to equality constraints by
solving a set of linear equations rather than twoquadratic pro-
gramming problems (QPPs). Experiments have shown that
LSTSVM can considerably reduce the training time, while
still achieving competitive classification accuracy (Suykens
and Vandewalle 1999; Gao et al. 2011). Because LSTSVM is
a combination ofTSVMandLSSVM, it dramatically reduces
the time complexity of SVM. This is because LSTSVM
solves equality constraints instead of inequality constraints
as in LSSVM which makes the computational speed of the
algorithm faster. The number of constraints in each hyper-
plane in LSTSVM is half of that in SVMwhich again results
in very low computational complexity when compared to
SVM. LSTSVM also has far better accuracy compared to
SVM in most classification tasks.
LSTSVM finds its hyperplanes by minimizing Eqs. (6) and
(7) which are linearly solvable. By solving (6) and (7), values
of w and b for each hyperplane are obtained according to (8)
and (9).

Minimize
1

2
(Aw(1) + eb(1))T(Aw(1) + eb(1)) + c1

2
qTq

w.r.t. w(1), b(1)

subject to (Bw(1) + eb(1)) + q = e (6)

Minimize
1

2
(Bw(2) + eb(2))T(Bw(2) + eb(2)) + c2

2
qTq

w.r.t. w(2), b(2)

subject to (Aw(2) + eb(2)) + q = e (7)

[
w(1)

b(1)

]
= −

(
FT F + 1

c1
ET E

)−1

FTe (8)

[
w(2)

b(2)

]
= −

(
ETE + 1

c2
FTF

)−1

ETe (9)

where E = [
A e

]
and F = [

B e
]
whereas A, B, e and q are

introduced in Sect. 2.2.

3 Proposed algorithm

LSTSVM has four parameters c1, c2, sigma1 and sigma2
which should be set by the user where c1 and c2 rep-
resent the amount of error for each class and sigma1
and sigma2 measure the impact of error on each hyper-
plane. These four parameters are highly dependent on the

123



4364 J. S. Sartakhti et al.

nature of the problem which means that for different prob-
lems, they would have different optimum values. This
affects the accuracy of LSTSVM and is considered as a
weakness.
Genetic algorithms, analytical gradient, numerical gradient
and Monte Carlo are examples of methods used to find the
optimum values for the parameters. Simulated annealing
(SA) is also used to find global optimum values for para-
meters. Although SA is time consuming, it achieves better
accuracies compared to other methods. In this study the SA
algorithm is used to find the best global values for LSTSVM
parameters.

3.1 Simulated annealing

SA is a technique to find the best solution for an optimization
problem by trying random variations of the current solution.
It is a generalization of a Monte Carlo method for examining
equations of state and frozen states of n-body systems. Figure
3 shows the pseudo code of the SA heuristic.
In each step, SA considers some neighboring state si of the
current state scurrent, and decides between moving to state si
or staying in state scurrent with some probability. The new
state (si ) will be accepted if it has a better fitness compared
to the current state (scurrent). If, however, the new state has
lower fitness, it will be accepted with the probability showed
in line 13 of the pseudo code. Note that the definition of “fit-

Fig. 3 Pseudo code of simulated annealing

c = [c1, c2] and sigma = [sigma1, sigma2]
c ← c0;
sigma ← sigma0;
Acc = MyLSTSVM (dataset, classes, method, c0, sigma0);
cbest ← c; sigmabest ← sigma; Accbest ← Acc;
iteration ← 0; iterationmax ← Constant Value (e.g. ∞);
While iteration < iterationmax

{
cnew = c − 0.01 + (0.02) ∗ randn(1, 2);
sigmanew = sigma − 0.0001 + (0.0002) ∗ randn(1, 2);
AccNew = MyLSTSVM(dataset, classes, method, c0, sigma0);
if exp((AccNew − Acc) ∗ iteration) > rand(1, 1)
{

c ← cnew; sigma ← sigmanew;Acc ← AccNew;
cbest ← cnew; sigmabest ← sigmanew;
iteration ← iteration+ 1;

}
}
return cbest, sigmabest, Accbest

Fig. 4 Algorithm outline: SA-LSTSVM

ness” depends on the goal of the problem. These probabilistic
movements ultimately lead the system to a state with almost
optimum solution.

3.2 SA-LSTSVM

This section presents the proposed SA-LSTSVM algorithm
in more detail. As already stated, LSTSVM has four parame-
ters, two for each of the hyperplanes, which depend on nature
of the problem. In SA a set of states is defined where each
state has a set of parameters which include c1, c2, sigma1
and sigma2. The start state and its parameters are initiated
by the user. For each state, SA defines a set of neighbors
(which are also part of the state set). To find optimum val-
ues for LSTSVM parameters, the values of parameters for
each particular state will initially differ from its neighbors.
At first, there is a great difference between the parameter val-
ues of each two neighbor states, but the difference decreases
as the algorithm iterates. In each iteration, a neighbor will be
selected randomly. If the selected neighbor has higher accu-
racy than the current state, the selected neighbor will be taken
and its parameters values (c and sigma) used as new parame-
ter values. Figure 4 shows the pseudo code of the combined
algorithm.

4 Experimental results

In this section, we describe the experiments designed to eval-
uate the performance of the proposed algorithm using some
benchmark datasets. To achievemore reliable test results, our
experiments used the k-fold cross-validation technique. This
technique minimizes the bias associated with the random
sampling of training (Delen et al. 2005). The k-fold cross-
validation technique randomly divides the whole dataset into
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k mutually exclusive and approximately equal size subsets.
Each classification algorithm was trained and tested k times
using these subsets. Each time one of the k folds is taken as
a test set, the remaining (k − 1) folds are used as training
data. Averaged results of the k-fold cross-validation are con-
sidered as the final results. In our evaluation, we used tenfold
cross-validation which is a very common case in the context.
Furthermore, because simulated annealing tries random vari-
ations of the current solution, one may criticize the proposed
method that it will be very time consuming for large data
sets. To answer this comment, we run our experiments on
two types of data sets: small data sets with <2000 samples,
and larger data sets with 3000 to 100,000 samples.

4.1 Small data sets

In this section, nine standard small data sets from the
UCI repository (Bache and Lichman 2013) were evaluated.
Table 1 shows some features of these data sets.
Table 2 presents the evaluation results of SA-LSTSVM and
six other algorithms on these data sets. These algorithms are
SVM, four different versions of SVMand adecision tree clas-
sification algorithm, C4.5 (Quinlan 1993), which has been
selected because of its good performance in classification
tasks. Bold text indicates best accuracies for each data set.
In this table the average accuracy of tenfold cross-validation
together with the variance of the accuracies are shown as
accuracy ± variance. For SA-LSTSVM the best values of c
and sigma are shown, too. Reported accuracies for TSVM,
GEPSVM (Mangasarian and Wild 2006), and PSVM (Fung
and Mangasarian 2001) are all extracted from Arun Kumar
and Gopal (2009).
Figures 4, 5, 6, 7, 8, 9, 10, 11 and 12 show the accuracy of
the SA-LSTSVM algorithm for each of the nine data sets for
different values of c and sigma. In some figures, the rela-
tion between values of the parameters and the accuracy of
SA-LSTSVM is obvious, e.g. Fig. 9, however, for some oth-

Table 1 Characteristics of the small data sets

Data sets # features # samples Lost data?

Australian Credit Approval 14 690 No

Liver Disorders 7 345 No

Contraceptive Method Choice
(CMC)

9 1473 No

Statlog (Heart) 13 270 No

Hepatitis 19 155 Yes

Ionosphere 34 351 No

Connectionist Bench (Sonar) 60 208 No

Congressional Voting Records 16 435 Yes

Breast Cancer Wisconsin
(Prognostic)

34 198 No
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Fig. 5 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Australian Credit Approval data set

Fig. 6 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Liver Disorder data set

Fig. 7 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on CMC data set

ers, e.g. Fig. 7 there is not an obvious relationship between
the accuracy of SA-LSTSVM and values of the parameters.
As it is mentioned before the optimum values for parame-

Fig. 8 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Statlog (Heart) data set

Fig. 9 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Hepatitis data set

Fig. 10 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Ionosphere data set

ters are problem dependent. The SA algorithm is used to
find the highest accuracy among continuous values of c and
sigma.
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Fig. 11 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Sonar data set

Fig. 12 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Congressional Voting Records data set

Fig. 13 Changes in the accuracy of SA-LSTSVM for different values
of c and sigma on Breast Cancer Wisconsin data set

Figures 13, 14, 15, 16, 17, 18, 19, 20 and 21 show how the
values of c and sigma changed during iterations of the SA
algorithm for the nine data sets. In these figures, the blue

Fig. 14 Changes of c and sigma in SA-LSTSVM on Australian Credit
Approval data set

Fig. 15 Changes of c and sigma in SA-LSTSVM on Liver Disorder
data set

Fig. 16 Changes of c and sigma in SA-LSTSVM on CMC data set
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Fig. 17 Changes of c and sigma in SA-LSTSVM on Statlog (Heart)
data set

Fig. 18 Changes of c and sigma in SA-LSTSVM on Hepatitis data set

Fig. 19 Changes of c and sigma in SA-LSTSVM on Ionosphere data
set

Fig. 20 Changes of c and sigma in SA-LSTSVM on Sonar data set

Fig. 21 Changes of c and sigma in SA-LSTSVM on Congressional
Voting Records data set

shows the changes in the value of c and the red curve shows
how sigma changes during the iterations. As it can be seen
from the figures, the way the algorithm moves toward the
optimum values for parameters depends on the data set.
Figures 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 show how
the accuracy of the SA-LSTSVM algorithm changes during
iterations of SA algorithm on the data sets. The figures show
that as the algorithm iterates the average accuracy increases,
but the accuracy variances decreased. The figures also show
that using SA-LSTSVM it is possible to achieve the global
best accuracy in a limited number of iterations (<60 iteration
in most of the data sets).

4.2 Larger data sets

To evaluate the performance of SA-LSTSVM on larger data
sets, we used David Musicant’s NDCData Generator (Musi-
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Fig. 22 Changes of c and sigma in SA-LSTSVM on Breast Cancer
Wisconsin data set

Fig. 23 Changes of the accuracy of SA-LSTSVMonAustralianCredit
Approval data set

cant 1998) to generate data sets with 3000, 4000, 5000,
10,000, and 100,000 samples and 32 features. Results of run-
ning each algorithm are shown in Table 3. The best accuracy
for each data set is shown in boldface. As it is shown in the
table, again SA-LSTSVM has the highest accuracies among
all versions of SVM for all data sets. However, only in NDC-
100k data set, C4.5 obtains a better accuracy compared to
SA-LSTSVM.

4.3 Statistical comparison of classifiers

The above experiments showed that for all of the studied
datasets, the accuracy of SA-LSTSVM is higher than other
compared algorithms.However, there still a question remains
which is “Are these differences statistically significant?”. In
other words, it is important to show that these algorithms are

Fig. 24 Changes of the accuracy of SA-LSTSVM on Liver Disorder
data set

Fig. 25 Changes of the accuracy of SA-LSTSVM on CMC data set

Fig. 26 Changes of the accuracy of SA-LSTSVM on Statlog (Heart)
data set
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Fig. 27 Changes of the accuracy of SA-LSTSVM on Hepatitis data
set

Fig. 28 Changes of the accuracy of SA-LSTSVM on Ionosphere data
set

Fig. 29 Changes of the accuracy of SA-LSTSVM on Sonar data set

Fig. 30 Changes of the accuracy of SA-LSTSVM on Congressional
Voting Records data set

Fig. 31 Changes of the accuracy of SA-LSTSVM on Breast Cancer
Wisconsin data set

statistically different. In Demšar (2006), Demsar introduced
different ways of comparing algorithms over multiple data
sets. Since we have seven algorithms for comparison, we
choose to use Friedman test which is a non-parametric coun-
terpart ofANOVA.Although there are some implementations
of the Friedman test in some software tools like MATLAB
and KEEL (Alcal-Fdez et al. 2009), we chose to implement
the test by ourselves in MATLAB. The Friedman test ranks
the algorithms for each dataset separately in the way that the
best performing algorithm getting the rank 1, the second best
ranked 2 and so on. In case of ties, e.g. in CMC, Hepati-
tis, Congressional Voting Records, and NDC-4k, the average
ranks are assigned. Table 4 shows the ranks of the classifiers
for different datasets used in this paper. Numbers inside the
parenthesis are the ranks of classifiers for the correspond-
ing dataset. The final row contains the average ranks of each
classifier which is computed as R j = 1

N

∑
i r

j
i , where r j

i
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Table 3 Experimental results of
SA-LSTSVM and other
algorithms on larger data sets

Dataset Algorithms

SA-LSTSVM LSTSVM TSVM GEPSVM PSVM SVM C4.5

NDC-3k 85.16 79.24 77.73 77.20 79.23 62 80

NDC-4k 84.32 79.87 78.65 75.98 79.87 61.85 80.42

NDC-5k 85.40 78.93 77.49 75.43 78.01 61.72 79.52

NDC-10k 87.64 86.17 85.31 84.32 85.95 61.4 82.5

NDC-100k 88.31 86.07 * 84.02 86.32 ∗ 89.2

The ∗ sign shows that the algorithm did not converge in a reasonable time

Table 4 Rankings of the classifiers for each dataset

Dataset Algorithms

SA-LSTSVM LSTSVM TSVM GEPSVM PSVM SVM C4.5

Australian Credit Approval 88.21 (1) 86.61 (3) 86.91 (2) 80.00 (7) 85.43 (5) 85.51 (4) 85.2 (6)

Liver Disorder 71.3 (1) 70.90 (2) 70.5 (3) 66.36 (6) 70.15 (4) 58.32 (7) 68.3 (5)

Contraceptive Method Choice (CMC) 70.48 (1) 68.84 (3.5) 68.84 (3.5) 68.76 (5) 68.98 (2) 67.82 (6) 65.1 (7)

Statlog (Heart) 90.61 (1) 85.55 (4) 86.66 (2) 85.55 (4) 85.55 (4) 84.07 (6) 76.6 (7)

Hepatitis 98.21 (1) 86.42 (2) 85.71 (3.5) 85 (5) 85.71 (3.5) 80.83 (6) 60.6 (7)

Ionosphere 91.37 (1) 89.70 (3) 88.23 (5) 84.11 (7) 89.11 (4) 86.04 (6) 90.8 (2)

Connectionist Bench (Sonar) 82.81 (1) 80.47 (3) 80.52 (2) 79.47 (5) 78.94 (6) 79.79 (4) 68.3 (7)

Congressional Voting Records 98.22 (1) 95.23 (3) 95.9 (2) 95 (4.5) 95 (4.5) 94.5 (6) 91.6 (7)

Breast Cancer Wisconsin (Prognostic) 97.35 (1) 83.88 (3) 83.68 (4) 81.11 (6) 83.3 (5) 79.92 (7) 90.5 (2)

NDC-3k 85.16 (1) 79.24 (3) 77.73 (5) 77.20 (6) 79.23 (4) 62 (7) 80 (2)

NDC-4k 84.32 (1) 79.87 (3.5) 78.65 (5) 75.98 (6) 79.87 (3.5) 61.85 (7) 80.42 (2)

NDC-5k 85.40 (1) 78.93 (3) 77.49 (5) 75.43 (6) 78.01 (4) 61.72 (7) 79.52 (2)

NDC-10k 87.64 (1) 86.17 (2) 85.31 (4) 84.32 (5) 85.95 (3) 61.4 (7) 82.5 (6)

Average Rank 1 2.923 3.538 5.576 4.038 6.153 4.769

is the rank of the jth algorithm on the ith dataset. Note that
since for NDC-100k two of the algorithms do not converged,
we do not count this dataset in the evaluation.

The above experiments showed that for all of the studied
datasets, the accuracy of SA-LSTSVM is higher than other
compared algorithms.However, there still a question remains
which is “Are these differences statistically significant?”. In
other words, it is important to show that these algorithms are
statistically different. In Demšar (2006), Demsar introduced
different ways of comparing algorithms over multiple data
sets. Since we have seven algorithms for comparison, we
choose to use Friedman test which is a non-parametric coun-
terpart ofANOVA.Although there are some implementations
of the Friedman test in some software tools like MATLAB
and KEEL (Alcal-Fdez et al. 2009), we chose to implement
the test by ourselves in MATLAB. The Friedman test ranks
the algorithms for each dataset separately in the way that the
best performing algorithm getting the rank 1, the second best
ranked 2 and so on. In case of ties, e.g. in CMC, Hepati-
tis, Congressional Voting Records, and NDC-4k, the average
ranks are assigned. Table 4 shows the ranks of the classifiers
for different datasets used in this paper. Numbers inside the

parenthesis are the ranks of classifiers for the correspond-
ing dataset. The final row contains the average ranks of each
classifier which is computed as R j = 1

N

∑
i r

j
i , where r j

i
is the rank of the jth algorithm on the ith dataset. Note that
since for NDC-100k two of the algorithms do not converged,
we do not count this dataset in the evaluation.

The null-hypothesis is that all the algorithms are equiva-
lent. Then the Friedman statistic is calculated and finally the
critical value of the distribution of the Friedman statistic is
compared with the statistic itself. The null-hypothesis will
be rejected if the statistic is higher than the critical value.
The Friedman statistic is computed as follows:

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ . (10)

In this equation, k and N are the total number of classifiers
and the total number of datasets, respectively. In our case
k = 7 and N = 13. The statistic is distributed according to
χ2
F with k − 1 degrees of freedom, when N and k are big

enough (as a rule of thumb, N > 10 and k > 5) which is our
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case (Demšar 2006). Iman andDavenport (1980) showed that
Friedman’sχ2

F is undesirably conservative and they proposed
a better statistic as bellow.

FF = (N − 1)χ2
F

N (k − 1) − χ2
F

(11)

which is distributed according to theF-distributionwith k−1
and (k − 1)(N − 1) degrees of freedom.
The computed Friedman statistic and the corresponding FF
statistic for our experiments are:

χ2
F = 12 ∗ 13

7 ∗ 8

[
(12 + 2.9232 + 3.5382 + 5.5762

+ 4.0382 + 6.1532 + 4.7692) − 7 ∗ 82

4

]
= 50.3

FF = 12 ∗ 50.3

13 ∗ 6 − 50.3
= 21.8

With seven algorithms and 13 datasets, FF is distributed
according to the F distribution with 7 − 1 = 6 and (7 −
1) × (13 − 1) = 72 degrees of freedom. The critical value
of F(6, 72) for α = 0.05 is 2.23, so we reject the null-
hypothesis which means that the algorithms are statistically
different.
By rejecting the null-hypothesis we can proceed with a post-
hoc test. Since we want to compare all other classifiers with
our proposed SA-LSTSVM, we will use the Bonferroni–
Dunn test (Dunn 1961). In Demšar (2006) it is explained that
based on Nemenyi test (Nemenyi 1963), the performance of
two classifiers is significantly different if the corresponding
average ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N

where qα is the critical value.
The Bonferroni–Dunn test controls the family wise error

rate by divingα by the number of comparisonsmadewhich is
k−1 in this case. The alternativeway to compute the same test
as it is introduced in Demšar (2006) is to compute the critical
difference, CD, using the same equation as the Nemenyi test,
but using the critical values for α

(k−1) . The critical value q0.05
for seven classifiers is 2.638 and, therefore, we have CD

= 2.638
√

7∗8
6∗13 = 2.235. Using this critical difference, we

can conclude that:

• SA-LSTSVM performs significantly better that
LSTSVM, since 1 − 2.923 < 2.235

• SA-LSTSVM performs significantly better that TSVM,
since 1 − 3.538 < 2.235

• SA-LSTSVM performs significantly better that
GEPSVM, since 1 − 5.576 < 2.235

Table 5 Computational time analysis (in second) of SVM, LSTSVM
and SA-LSTSVM

Data sets Algorithms SVM LSTSVM SA-LSTSVM

Australian Credit Approval 1.9 0.014 1.74

Liver Disorder 1.85 0.008 1.01

Contraceptive Method
Choice (CMC)

3.6 0.018 0.87

Statlog (Heart) 1.58 0.013 1.11

Hepatitis 1.3 0.009 0.93

Ionosphere 1.49 0.035 0.69

Connectionist Bench
(Sonar)

1.45 0.053 1.29

Congressional Voting
Records

3.21 0.008 1.6

Breast Cancer Wisconsin
(Prognostic)

3.73 0.028 0.8

NDC-3k 11.08 0.009 3.05

NDC-4k 22.83 0.014 7.54

NDC-5k 59.58 0.018 45.50

NDC-10k 241.68 0.026 211.56

NDC-100k ∗ 0.19 1684.82

• SA-LSTSVM performs significantly better that PSVM,
since 1 − 4.038 < 2.235

• SA-LSTSVM performs significantly better that SVM,
since 1 − 6.153 < 2.235

• SA-LSTSVM performs significantly better that C4.5,
since 1 − 4.769 < 2.235.

4.4 Computational time analysis

As stated in Sect. 2.3, LSTSVM is computationally faster
than SVM with a computational time better than SVM by
a factor of 4. SA is a probabilistic meta heuristic algorithm
which takes random walks through the problem space. This
may suggest that the SA-LSTSVM algorithm may be com-
putationally very slow. However, our computational time
analysis indicates otherwise.
Table 5 shows the computational times in second for the SA-
LSTSVM, LSTSVM and SVM algorithm for all of the data
sets. For the SA-LSTSVM algorithm the maximum number
of iterations considered in the experiment was 25. This num-
berwas chosenbecausewith this value for kmax, the algorithm
achieves good accuracies for each of the different data sets.
Although, we did not have any claim about the running time
of the proposed SA-LSTSVM, Table 5 shows that the com-
putational time of the SA-LSTSVM algorithm falls between
the computational time of LSTSVM algorithm, which is the
fastest version of SVM, and the standard SVM. In the table,
the ∗ sign shows that the computational time is extremely
high and the algorithm does not converge to an acceptable
accuracy in a reasonable time. Although, the obtained com-
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putational times for LSTSVM are better than SA-LSTSVM
and SVM, the proposed SA-LSTSVM has higher accura-
cies when compared to both LSTSVM and SVM for all data
sets.

5 Conclusion

The LSTSVM algorithm is a relatively new addition of the
family of SVM classifier algorithms and being based on
non-parallel twin hyperplanes has shown good classifica-
tion performance. However, the algorithm has parameters
which are problem dependent and finding the optimum val-
ues for these parameters is itself a challenging problem that
affects the accuracy of the algorithm. In this paper we have
proposed an improved LSTSVM algorithm (SA-LSTSVM)
by hybridizing it with the well-known simulated annealing
(SA) algorithm to determine the optimum parameter values
for the LSTSVM algorithm. Experimental results on data
sets with different sizes have demonstrated that the algo-
rithm has higher accuracies compared to other well-known
classification algorithms while its computational time is also
reasonable.
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